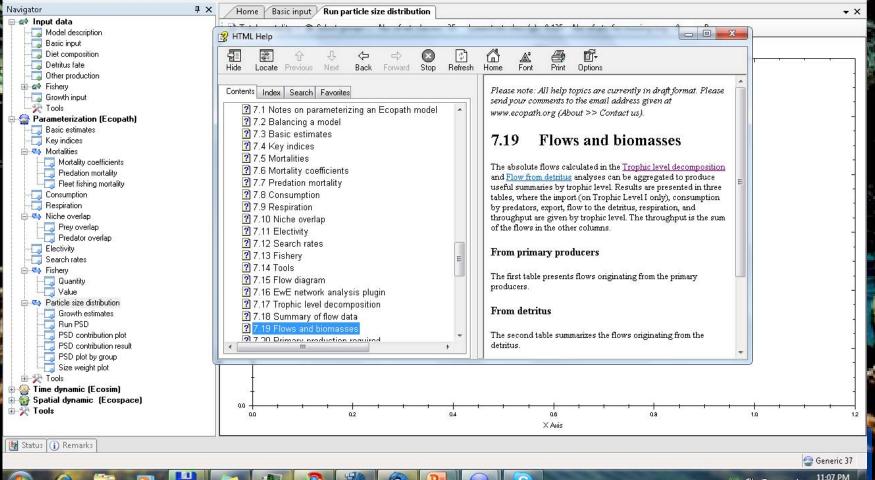
Running Ecopath

• Ecopath with Ecosim is freely available for download through www.ecopath.org

Ecopath includes extended help

Ecopath with Ecosim 6 - Generic_37.EwEmdb


File View Ecopath Ecosim Ecospace Tools Windows Help

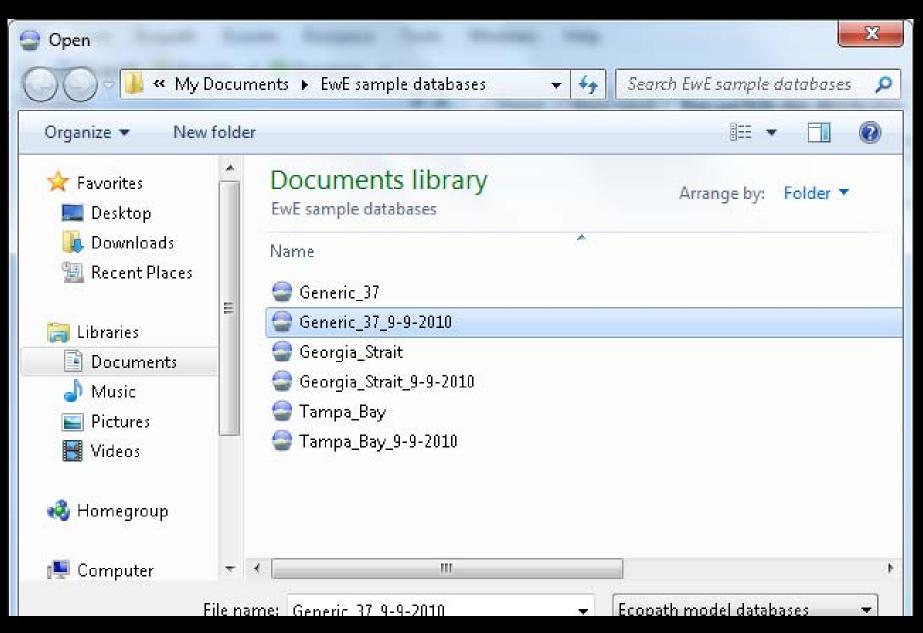
🗌 🍚 Ecopath 🥨 Ecosim 🔹 🌚 Ecospace 🔹 📃

C:\Users\Razinka\Documents\EwE sample databases\Generic_37.EwEmdb

- 0

9/9/2010

Defining the ecosystem



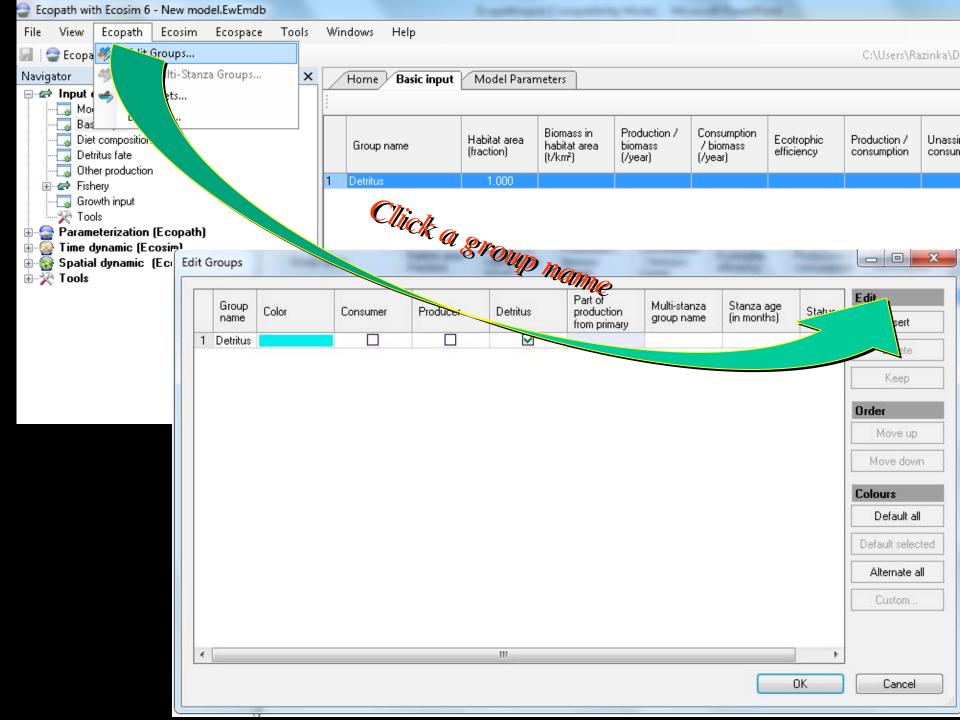
Odum's definition:

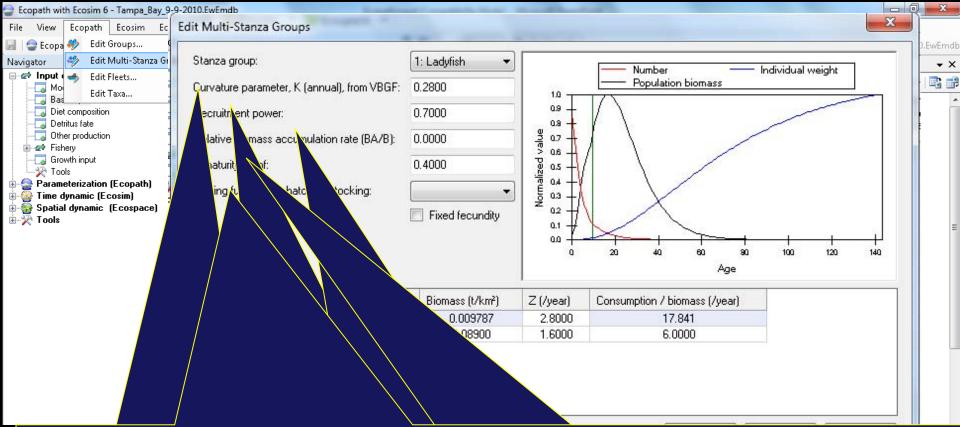
"any entity or natural unit that includes living and nonliving parts interacting to produce a stable system in which the exchange of materials between the living and nonliving parts follows circular paths is an ecological system or ecosystem. The ecosystem is the largest functional unit in ecology, since it includes both organisms (biotic communities) and abiotic environment, each influencing the properties of the other and both necessary for maintenance of life as we have it on the earth. A lake is an example of an ecosystem."

Odum. E.P. 1953. Fundamentals of Ecology.

Open a model from the database

Model information


Ecopath with Ecosim 6 - Generic_37_9-9-2010.EwEmdb		
File View Ecopath Ecosim Ecospace Tools	Windows Help	
🚽 🚭 Ecopath 🥝 Ecosim 🔹 🌚 Ecospace 🔹		C:\Users\Razinka\Documents\EwE sample databases\Generic_37_9-9-2010.EwEmd
Navigator 🛛 🕹 🗸	Home Basic input Model Parameters	▼ X
Par opath) Time n) Spati. space)	Model Name: Generic 37 Description: A generic model of a marine ecosystem; 13-Feb-01 15:08:3: 1/23/2007 10:44:50 AM; 1/24/2007 4:12:36 PM Author: Contact:	3; 13-Feb-01 16:50:41; 13-Feb-01 16:58:27; 14-Feb-01 12:16:19; 13-Jan-05 09:59:56; 1/18/2007 3:25:25 PM;
	North: 0.000 m West: 0.000 m East. 0.000 South: 0.000 m m m	Look up
	General options	
	Number formatting Relevant decimal digits: 3	Monetary units Unit: EUR Euro 💌
	Currency units Energy related: Nutrient related:	Time units ⊚ year *)
	● wet weight (t/km²)	🔘 day
🙀 Status 🕕 Remarks	joules (J/m²) phosporus (mg P/m²)	🔿 other unit:
		Generic 37 🤤 Generic 37
🚳 🥭 🚞 🖸 💾	🔼 🔍 🦻 😻 🚳 💽 🤮	S 🛷 - 😢 🛱 🖿 📶 🐠 11:11 PM


Defining the ecosystem groups

• Use functional ecological groupings; - At least one group must be a detritus group; Use ecological similarities (niche overlap) rather than taxonomy to aggregate species; Groupings must conform with data availability; Leaving out a group known to occur because of lack of data is worse than using guesstimates! • As a rule for ecosystem models: include all trophic levels (but go easy on bacteria).

Top predators are special

They are important in models, as they help to constrain the parameters of other consumers -- as primary production does from below;
Ecosim simulations are more realistic if the top predator groups are split into adult and juvenile sub-groupings to capture ontogenetic diet shifts.

Forcing function number for hatchery stocking Multi-stanza populations can be designated as hatchery populations (see Hatchery populations in Ecosim), and hatchery production can be varied over time in Ecosim using time forcing functions. To turn off natural reproduction select the hatchery forcing function from the pull-down menu in the Forcing function number for Data requirements for Ecopath models

The basic input:

- B Biomass (t·km⁻²)
 P/B Production / Biomass (t·km⁻²·year⁻¹)
 Q/B Consumption / Biomass (t·km⁻²·year⁻¹)
 EE Ecotrophic efficiency (proportion)
- For basic input, and for diets and catches, it is possible to use ranges for all parameters (see Ecoranger).

Basic input

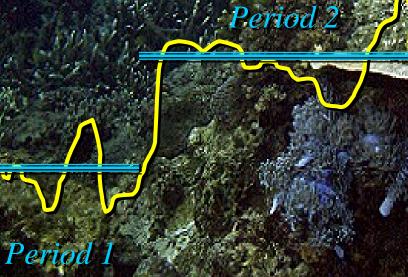
	Home Basic input									
:									Set:	
	Group name	Habitat area (fraction)	Biomass in habitat area (t/km²)	Z (/year)	Production / biomass (/year)	Consumption / biomass (/year)	Ecotrophic efficiency	Production / consumption	Unassimil. / consumption	Detritus import (t/km²/year)
9	Snook									
1	0-12 Snook	1.0000	0.0002196	5.0000		25.512			0.2000	
2	3-12 Snook	1.0000	0.01872	2.0000		6.2680			0.2000	
3	12-48 Snook	1.0000	0.2299	0.9000		2.3628			0.2000	
4	48-90 Snook	1.0000	0.09962	0.6200		1.4982			0.2000	
5	90+ Snook	1.0000	0.02000	0.6000		1.3000			0.2000	
	Red Drum									
6	0-3 Red Drum	1.0000	0.0002739	8.0000		7,520			0.2000	
7	3-8 Red Drum	1.0000	0.004158	3.5000		98			0.2000	
8	8-18 Red Drum	1.0000	0.02726	1.1000					0000	
9	18-36 Red Drum	1.0000	0.1083	0.6000					7	
10	36+ Red Drum	1.0000	0.3000	0.550(1		
9	Sea Trout							1.		
11	0-3 Sea Trout	1.0000	0.00009097	6.000						
12	3-18 Sea Trout	1.0000	0.02597	1.400			/			
13	18+ Sea Trout	1.0000	0.2200	0.700			/			
9	Sand Trout					. /				
14	0-3 Sand Trout	1.0000	0.00001969	5.000		/				
15	3-12 Sand Trout	1.0000	0.002523	1.200	1.00	/				
16	12+ Sand Trout	1.0000	0.1000	0.700	1					
9	Mullet					Bid	omass			
17	0-6 Mullet	1.0000	0.06486	6.7000		2.				
18	6-18 Mullet	1.0000	0.5225	1.8000					000	
19	18+ Mullet	1.0000	2.8000	0.8000		8.0000			0.2000	
9	Mackrel									
20	Mackrel 0-3	1.0000	0.00000124	4.0000		82.559			0.2000	
21	Mackrel 3±	1 0000	0.01830	0 5000		0000.3			0.2000	

Data requirements for Ecopath models For each group, provide estimates in green, and the program will estimate those in red. Choose one: 1). B, P/B, Q/B, EE, DCs, ... 2). B, P/B, Q/B, EE, DC 3). B, P/B, Q/B, EE, DCs,.... 4). B, P/B, Q/B, EE, DCs, Ranked ease of estimation: P/B and Q/B > B > DCs >> EE hence EE often left unknown (Option 1).

Biomass (B)

 Biomasses are obtained from standard assessment methodologies

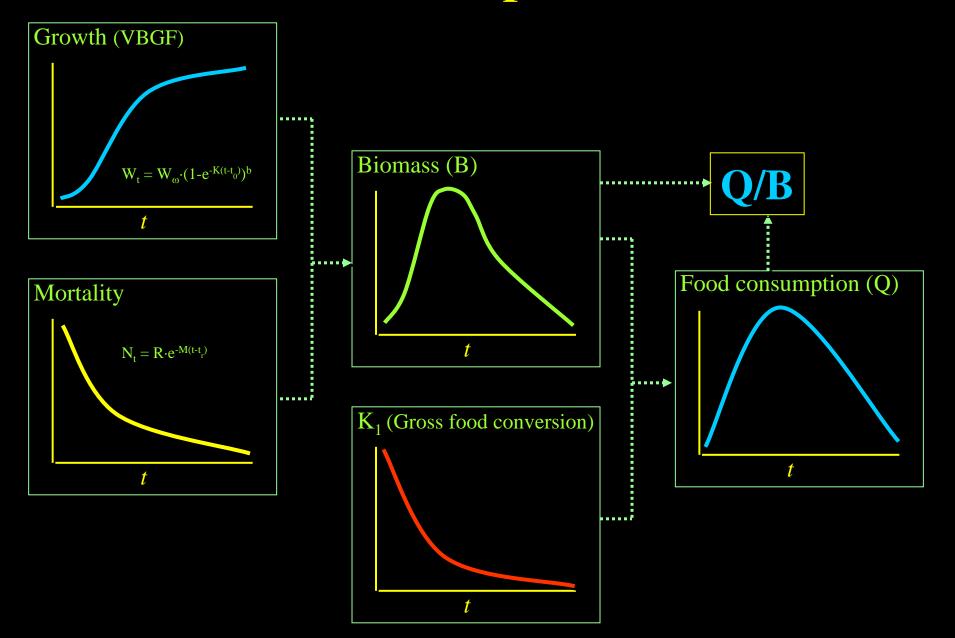
Biomass (B)

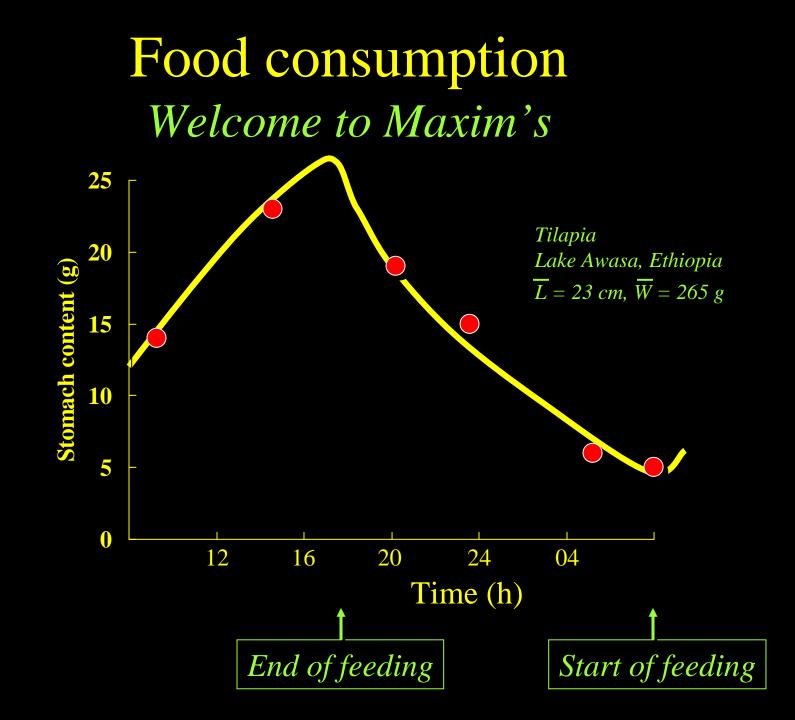


A case for making 3 models

P/B - Production/biomass

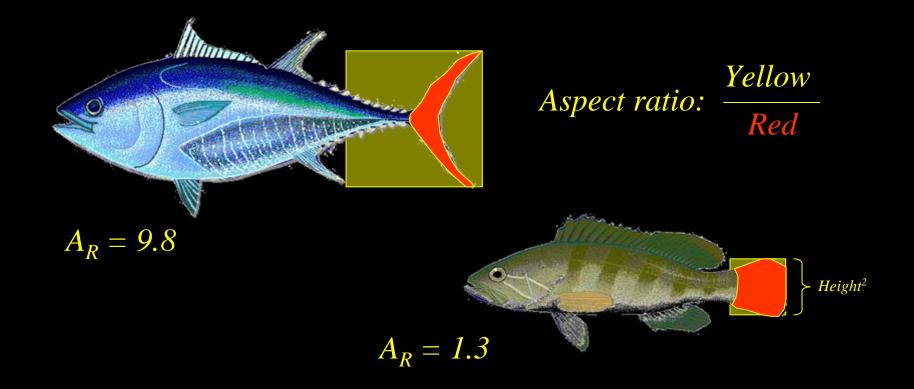
- From catch composition data using standard stock assessment methodologies;
- Natural mortality of fish from Pauly's (1980) empirical equation: $M = K^{0.65} \cdot L_{co}^{-0.279} \cdot T^{0.463}$


F = catch / biomass;
P/B = Z = F + M.

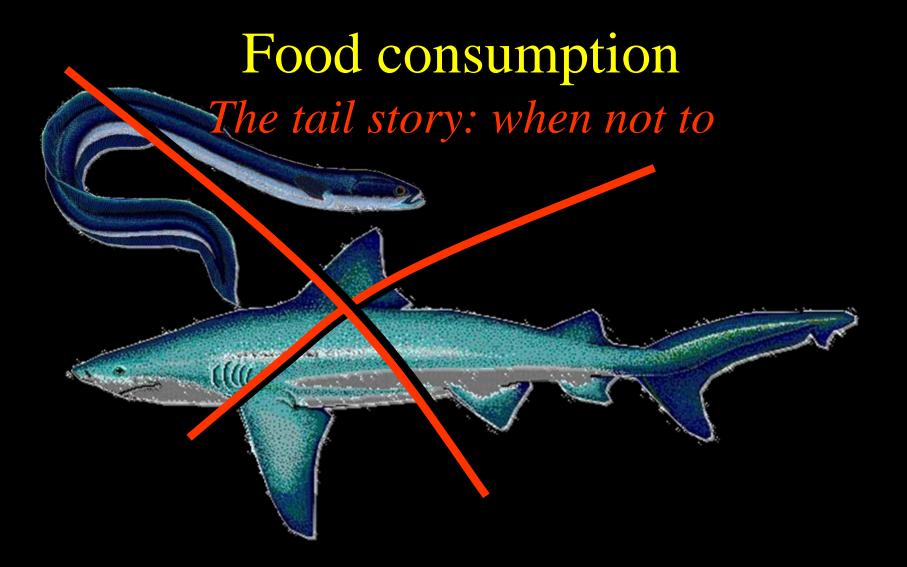

Q/B - Food consumption

Five years in the lab, or ?

Food consumption (Q/B)



Food consumption - The tail story



Food consumption - The tail story

 $\overline{Q/B} = 3 \cdot W_{\omega}^{-0.2} \cdot T^{0.6} \cdot A_R^{-0.5} \cdot 3 e^{Ft}$

 W_{ω} = asymptotic weight T = temperature A_{R} = aspect ratio = F_{t} = foodtype (0 f. carn.)

Only for symmetrical tails used for propulsion

Ecotrophic efficiency (EE)

- EE is the proportion of the production that is used in the system (for predation or export);
- 1-EE corresponds to 'other mortality';
- It is advisable to let Ecopath estimate EE;
- For most groups EE will be close to 1, except, e.g., phytoplankton in bloom situations where EE may be closer to 0.5, kelps with EE's ≈ 0.1, and unexploited top predators where EE may be (close to) 0;

• "Small pelagics don't die of old age

Other input for Ecopath models

For up to 50 groups:

- Assimilation rate
- Diet compositions
- Immigration rate
- Emigration rate
- Biomass accumulation
 rate
- Detritus fate

For up to 10 fleets: Landings • Discards • Discard fate • Fixed cost of fishing Variable cost / Market price by fleet and group Non-market value

Default values are supplied (20% for non-assimilated, 0 for other)

Non-assimilated food (U) • Remember the Ecopath Master Equation (II): Q = P + R + U

• Q and P are estimated first • Respiration (R) is then calculated as $\mathbf{R} = (\mathbf{Q} - \mathbf{P}) - \mathbf{U}$ i.e.; changing U only impacts R • The default value of 20% for U is generally acceptable, except for herbivores and detritivores where 40% leads to more reasonable R/B ratios.

Diet compositions e.g., for a tuna

Auxids 1.7%

Sardines 7%

Anchovies 8,8%

Squids 12.3%

Euphausiids 3.5%

Portunids 15.8%

Partly digested fish 31.6%

Others 19.3%

Use volume or weight!

Migration

Immigration and emigration are rates (t·km⁻²·year⁻¹); Net migration enters into the production equation (Master Equation I); Net migration is also used by Ecosim.

Home Basic input Diet composition Other production									
:									
	Group name	Immigration (t/km²/year)	Emigration (t/km²/year)	Emigration rate (/year)	Biom. accumul. (t/km²/year)	Biom. acc. rate (/year)			
1	Transient Orcas	0.000	0.000	0.000	0.000	0.000			
2	Dolphins (Res. Orca)	0.000	0.000	0.000	0.00100	0.000			
3	Seals Sealions	0.000	0.000	0.000	0.000	0.000			
4	Halibut	0.000	0.000	0.000	0.000	0.000			
5	Lingcod	0.000	0.000	0.000	0.000	0.000			
6	Dogfish Shark	0.000	0.000	0.000	0.000	0.000			
7	A. Hake	0.000	0.000	0.000	0.000	0.000			
8	J. Hake	0.000	0.000	0.000	0.000	0.000			
9	A. Res. Coho	0.000	0.000	0.000	0.000	0.000			
10	J. Res. Coho	0.000	0.000	0.000	0.000	0.000			
11	A. Res. Chinook	0.000	0.000	0.000	0.000	0.000			
12	J. Res. Chinook	0.000	0.000	0.000	0.000	0.000			
13	Demersal Fishes	0.000	0.000	0.000	0.000	0.000			
14	Sea Birds	0.000	0.000	0.000	0.000	0.000			
15	Small Pelagics	0.000	0.000	0.000	0.000	0.000			
16	Eulachon	0.000	0.000	0.000	0.000	0.000			
17	A. Herring	0.000	0.000	0.000	0.000	0.000			
18	J. Herring	0.000	0.000	0.000	0.000	0.000			
19	Jellyfish	0.000	0.000	0.000	0.000	0.000			
20	Predatory Invertebrates	0.000	0.000	0.000	0.000	0.000			
21	Shellfish	0.000	0.000	0.000	0.000	0.000			
22	Grazing Invertebrates	0.000	0.000	0.000	0.000	0.000			
23	C. Zoolplankton	0.000	0.000	0.000	0.000	0.000			
24	H. Zoolplankton	0.000	0.000	0.000	0.000	0.000			
25	Kelp/Sea Grass	0.000	0.000	0.000	0.000	0.000			
26	Phytoplankton	0.000	0.000	0.000	0.000	0.000			

Diet composition

/	Home Basic input	Diet co	mpositia	n																	
1) Sum to one																	Set:			Apply
	Prey \ predator	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Transient Orcas																				
2	Dolphins (Res. Orca)	0.0200																			
3	Seals Sealions	0.967																			
4	Halibut		0.00100																		
5	Lingcod		0.0100	0.0217		0.00311															
	Dogfish Shark		0.00100			0.00311															
	A. Hake		0.200	0.253		0.129	0.0452							0.0270							
8	J. Hake			0.0656		0.001000	0.0510	0.0500				0.00122		0.0110				0.000998	1		
9	A. Res. Coho		0.0461	0.0278		0.000997	0.000955														
	J. Res. Coho			0.0700		0.00997	0.00400	0.01000		0.00200		0.00400						0.00200			
11	A. Res. Chinook		0.0461	0.0402																	
12	J. Res. Chinook			0.110			0.0900			0.00120		0.00122						0.000998			
	Demersal Fishes		0.159	0.260	0.179	0.339	0.161			0.00120		0.00732		0.01000	0.0749			0.000998		0.000909	1
		0.00300													0.000999						
15	Small Pelagics	0.01000	0.191	0.0827	0.498	0.0228		0.01000	0.0250	0.260		0.0999		0.0952	0.0769			0.00499	0.00100)	
	Eulachon		0.00201	0.00908	0.00498	0.0207	0.00478	0.00500		0.0180		0.0170		0.0476	0.00400			0.00998	0.00100	0.00545	
	A. Herring		0.0501	0.0575	0.194	0.301	0.00478	0.00100		0.0600		0.110			0.0190						
	J. Herring				0.00498	0.00933		0.00100	0.00500	0.200	0.000999	0.360	0.00513		0.00999			0.00998		0.00545	
	Jellyfish																			0.0527	
	Predatory Invertebrates		0.146			0.0415	0.00955				0.0120		0.0513	0.144							0.0338
	Shellfish			0.00101			0.0487							0.143	0.158				0.0531		0.276
	Grazing Invertebrates			0.00101				0.133			0.0120		0.0205	0.285	0.536	0.100					0.315
	C. Zoolplankton				0.119	0.0799	0.580	0.740	0.120	0.380	0.731	0.394	0.615	0.190		0.500	0.450	0.192	0.212	0.105	
	H. Zoolplankton				2	0.0394		0.0500	0.850	0.0780	0.244	0.00599		0.0476	0.0300	0.400	0.500	0.382	0.637	0.739	
	Kelp/Sea Grass					0.0001		0.0000	5.500	0.0100		2.23000	0.000	0.0110	2.5000	5.100	0.000	0.002	5.001	5.100	
	Phytoplankton														0.00500		0.0500	1	0.0961	0.0909	
	Detritus														0.0849		0.0000		0.0001	0.0000	0.375

Estimation of diet compositions

'Import' is feeding on prey groups that are not explicitly included in the ecosystem;

OF

- Example: If marine mammals in a model of the nearsurface open ocean feed on mesopelagics in the Deep Scattering Layer, then treat the mesopelagics as import;
- Diet compositions are often species-specific, and may need averaging. Use weighted averages;
- Still, it is often necessary to modify the diet compositions to ensure mass-balance.

Biomass accumulation (B_{acc})

 Ecopath is <u>not</u> a steady-state model, biomasses can change over time;

• B_{acc} is entered as rates (± t · km⁻² · year⁻¹);

- Default 0, has been used in nearly all models (an exception: North Sea Model of Christensen, 1995);
- Use B_{acc} if you have data showing change in biomass at start and end of the period to be modeled;

• If B_{acc} values are entered, Ecosim will show change over time even without any change in fishing.

Detritus fate

- At least one detritus group is required. It must be entered after the living groups on the Ecopath input form;
- All living groups produce detritus, from excretion and egestion, and from 'other mortality';
- It is therefore necessary to specify to which detritus group the detritus generated by a living group is directed.

Detritus fate

	Home Basic input Detr	itus fate		
:				
	Source / fate	Detritus	Export	Sum
1	Baleen whales	1.000	0.000	1.000
2	Toothed whales	1.000	0.000	1.000
3	Seals	1.000	0.000	1.000
4	Birds	1.000	0.000	1.000
5	Sharks, large	1.000	0.000	1.000
6	Sharks, small medium	1.000	0.000	1.000
7	Rays, large	1.000	0.000	1.000
8	Rays, small medium	1.000	0.000	1.000
9	Pelagics, large	1.000	0.000	1.000
10	Pelagics, medium	1.000	0.000	1.000
11	Pelagics, small, carniv.	1.000	0.000	1.000
12	Pelagics, small, herbiv.	1.000	0.000	1.000
13	Benthopelagics, large	0.000	1.000	1.000
14	Benthopelagics, small medium	0.000	1.000	1.000
15	Demersals, large	1.000	0.000	1.000
16	Demersals, medium	1.000	0.000	1.000
17	Demersals, small	1.000	0.000	1.000
18	Reeffish, large	1.000	0.000	1.000
19	Reeffish, medium	1.000	0.000	1.000
20	Flatfish, large	1.000	0.000	1.000
21	Flatfish, small medium	1.000	0.000	1.000
22	Reeffish, small	1.000	0.000	1.000
23	Bathypelagics	1.000	0.000	1.000
24	Bathydemersals	1.000	0.000	1.000
25	Jellyfish	1.000	0.000	1.000
26	Cephalopods	1.000	0.000	1.000
27	Shrimps	1.000	0.000	1.000

Fisheries data

- It is possible to include up to 10 fleets (or gears);
 - Parameters for each:
 - variable costs;
 fixed costs;
 - market prices;
 - landings;
 - discards;
 fate of discards.

Fishery: up to 10 fleets

	Home Basic input Detritus fate Definition of fleets Landings Discards											
-												
	Fleet name	Fixed cost (%)	Effort related cost (%)	Sailing related cost (%)	Profit (%)	Total value (%)						
1	Fleet1	0.000	0.000	1.000	99.000	100.000						

Landings

- To facilitate studies of policy options up to 10 fleets can be included in Ecopath analyses;
- The landings (exclusive of discards) should be entered as rates (t · km⁻²-year⁻¹);
- Landings with no values should be treated as landings (set price to 0), not as discards, as the latter are fed back into the system.

Discards are entered as rates (t • km⁻² •year⁻¹)

-

Discard fate

- For models with discards it is advisable to have a detritus group called, e.g., 'dead fish';
 - When so, then direct the discards to this group, and have scavengers feeding on it.
 - 'Dead fish' are of higher nutritional value than most other detritus (such as excreta from zooplankton).

Cost of fishing

- Fixed value of operating each gear can be entered (monetary currency per time unit);
- Variable cost is entered as relative to the effort in the Ecopath model;
- Spatial fishing costs may be entered in Ecospace;
- Any monetary currency can be used as unit;
- Only simple bio-economical analyses are included.

Landings, discards, prices

Home	Basic input

Detritus fate Definition of fleets Landings

	Group name	Fleet1	Total
1	Baleen whales		0.000
2	Toothed whales		0.000
3	Seals		0.000
4	Birds		0.000
5	Sharks, large	0.01000	0.010
6	Sharks, small medium	0.0400	0.040
7	Rays, large	0.0120	0.012
8	Rays, small medium	0.0200	0.020
9	Pelagics, large	0.0500	0.050
10	Pelagics, medium	0.400	0.400
11	Pelagics, small, carniv.	0.100	0.100
12	Pelagics, small, herbiv.	0.100	0.100
13	Benthopelagics, large	0.0500	0.050
14	Benthopelagics, small medium	0.200	0.200
15	Demersals, large	0.130	0.130
16	Demersals, medium	0.800	0.800
17	Demersals, small		0.000
18	Reeffish, large	0.0200	0.020
19	Reeffish, medium	0.200	0.200
20	Flatfish, large	0.0250	0.025
21	Flatfish, small medium	0.500	0.500
22	Reeffish, small		0.000
23	Bathypelagics		0.000
24	Bathydemersals		0.000
25	Jellyfish		0.000
26	Cephalopods	0.100	0.100
27	Shrimps	0.200	0.200
28	Lobsters, crabs	0.400	0.400

/	Home Basic input Detr	itus fate	Definitio
	Group name	Fleet1	Total
1	Baleen whales		0.000
2	Toothed whales		0.000
3	Seals		0.000
4	Birds		0.000
5	Sharks, large		0.000
6	Sharks, small medium		0.000
7	Rays, large		0.000
8	Rays, small medium		0.000
9	Pelagics, large		0.000
10	Pelagics, medium		0.000
11	Pelagics, small, carniv.		0.000
12	Pelagics, small, herbiv.		0.000
13	Benthopelagics, large		0.000
14	Benthopelagics, small medium		0.000
15	Demersals, large		0.000
16	Demersals, medium		0.000
17	Demersals, small		0.000
18	Reeffish, large		0.000
19	Reeffish, medium		0.000
20	Flatfish, large		0.000
21	Flatfish, small medium		0.000
22	Reeffish, small		0.000
23	Bathypelagics		0.000
24	Bathydemersals		0.000
25	Jellyfish		0.000
26	Cephalopods		0.000
27	Shrimps		0.000

	Group name	Fleet1 (EUR/t/km²)
1	Baleen whales	
2	Toothed whales	
3	Seals	
4	Birds	
5	Sharks, large	0.000
6	Sharks, small medium	0.000
7	Rays, large	0.000
8	Rays, small medium	0.000
9	Pelagics, large	0.000
10	Pelagics, medium	0.000
11	Pelagics, small, carniv.	0.000
12	Pelagics, small, herbiv.	0.000
13	Benthopelagics, large	0.000
14	Benthopelagics, small medium	0.000
15	Demersals, large	0.000
16	Demersals, medium	0.000
17	Demersals, small	
18	Reeffish, large	0.000
19	Reeffish, medium	0.000
20	Flatfish, large	0.000
21	Flatfish, small medium	0.000
22	Reeffish, small	
23	Bathypelagics	
24	Bathydemersals	
25	Jellyfish	
26	Cephelopods	0.000

Market prices


Fleet-specific prices for each group that is harvested;
Default value is 1 for all groups for all fleets.

Non-market values

Existence' values can be considered, e.g., the value for tourism of having, e.g., marine mammals in a system;
 Default value is 0.

Values should be expressed in At present it is assumed that there is a linear relationship between the biomass of a resource and its nonmarket price (if there is any). Hence, for groups with a non-/ market price it is assumed that a doubling in biomass will lead to a doubling of the resource's nonmarket value

	Basic input Detritus fate	Definition of
	Group name	Value/unit biomass
1	Baleen whales	0.000
2	Toothed whales	0.000
3	Seals	0.000
4	Birds	0.000
5	Sharks, large	0.000
6	Sharks, small medium	0.000
7	Rays, large	0.000
8	Rays, small medium	0.000
9	Pelagics, large	0.000
10	Pelagics, medium	0.000
11	Pelagics, small, carniv.	0.000
12	Pelagics, small, herbiv.	0.000
13	Benthopelagics, large	0.000
14	Benthopelagics, small medium	0.000
15	Demersals, large	0.000
16	Demersals, medium	0.000
17	Demersals, small	0.000
18	Reeffish, large	0.000
19	Reeffish, medium	0.000
20	Flatfish, large	0.000
21	Flatfish, small medium	0.000
22	Reeffish, small	0.000
23	Bathypelagics	0.000
24	Bathydemersals	0.000
25	Jellyfish	0.000
20	Contrate and	0.000

Growth input

	Basic input	Detritus fate	ritus fate Definition of fleets		Landings Discards		ls Discard r	Discard mortality rate		Off-vessel p	rice Non-ma
	Group name		a in LW	b in LW	Lat (cm)	infinity	W at infinity (g)	K in VBGF (/year)	toin VBGF (year)	Age first capture (year)	Max. age (year)
	Baleen whales										
2	Toothed whale	s									
	Seals										
4	Birds										
5	Sharks, large										
	Sharks, small rr	nedium									
	Rays, large										
	Rays, small me										
	Pelagics, large										
	Pelagics, mediu										
	Pelagics, small,										
	Pelagics, small,										
	Benthopelagics										
		s, small medium									
15	Demersals, larg	je									
16	Demersals, me	dium									
	Demersals, sma	ell									
	Reeffish, large										
19	Reeffish, mediu	Im									
	Flatfish, large										
21	Flatfish, small n	nedium									
22	Reeffish, small										
	Bathypelagics										
24	Bathydemersal:	s									
	Jellyfish										
26	Cephalopods										

Parameters based on the von Bertalanffy growth equation (von Bertalanffy 1938).

